- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Boskos, Dimitris (3)
-
Gracia, Ibon (2)
-
Lahijanian, Morteza (2)
-
Laurenti, Luca (2)
-
Cortes, Jorge (1)
-
Martinez, Sonia (1)
-
Mazo, Manuel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Abate, Alessandro (1)
-
Cannon, Mark (1)
-
Margellos, Kostas (1)
-
Papachristodoulou, Antonis (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Gracia, Ibon; Boskos, Dimitris; Laurenti, Luca; Lahijanian, Morteza (, Proceedings of Machine Learning Research (PMLR))Abate, Alessandro; Cannon, Mark; Margellos, Kostas; Papachristodoulou, Antonis (Ed.)In this paper, we introduce a data-driven framework for synthesis of provably-correct controllers for general nonlinear switched systems under complex specifications. The focus is on systems with unknown disturbances whose effects on the dynamics of the system is nonlinear. The specification is assumed to be given as linear temporal logic over finite traces (LTLf) formulas. Starting from observations of either the disturbance or the state of the system, we first learn an ambiguity set that contains the unknown distribution of the disturbances with a user-defined confidence. Next, we obtain a robust Markov decision process (RMDP) as a finite abstraction of the system. By composing the RMDP with the automaton obtained from the LTLf formula and performing optimal robust value iteration on the composed RMDP, we synthesize a strategy that yields a high probability that the uncertain system satisfies the specifications. Our empirical evaluations on systems with a wide variety of disturbances show that the strategies synthesized with our approach lead to high satisfaction probabilities and validate the theoretical guarantees.more » « less
-
Boskos, Dimitris; Cortes, Jorge; Martinez, Sonia (, IEEE)
An official website of the United States government

Full Text Available